마플시너지공통수학2풀이해설0640고퀄리티 풀이영상제공0640 대칭이동과 원의 최대/최소 거리

[문제 640] 핵심 개념 및 풀이 전략

평행이동을 통해 최단 거리를 구하는 문제입니다. 강을 건너는 문제의 대표적인 유형입니다.

접근법:
1. 횡단보도를 건너는 것은 y축 방향으로 20만큼 이동하는 것과 같습니다.
2. 학교 A와 도서관 B 사이의 최단 거리를 구하기 위해, 한 점(예: 학교 A)을 횡단보도의 이동 벡터만큼 **평행이동** 시킵니다.
3. 즉, 학교 A를 y축 방향으로 -20만큼 평행이동한 점 A’을 구합니다.
4. 최단 거리는 **평행이동한 점 A’과 원래 점 B 사이의 직선 거리**에 **횡단보도의 길이(20m)**를 더한 값입니다.

주의할 점:
강이나 도로처럼 폭이 있는 장애물을 건너는 최단 거리는, 대칭이동이 아닌 평행이동을 이용한다는 점을 기억해야 합니다.

대칭이동과 원의 최대/최소 거리

마플시너지공통수학2풀이해설0625고퀄리티 풀이영상제공0625 최단 거리 조건과 좌표의 관계

[문제 625] 핵심 개념 및 풀이 전략

대칭이동을 이용한 거리의 최솟값 문제에서, 최솟값을 갖게 하는 직선 위의 점 P의 좌표를 찾는 문제입니다.

접근법:
1. 624번과 같이, 한 점(예: B)을 대칭축(y=x)에 대해 대칭이동한 점 B’을 구합니다.
2. AP+BP의 최솟값은 선분 AB’의 길이입니다.
3. 최솟값을 갖게 하는 점 P는, **직선 AB’과 대칭축(y=x)의 교점**입니다.
4. 두 점 A, B’을 지나는 직선의 방정식을 구합니다.
5. 이 직선과 y=x를 연립하여 교점 P의 좌표를 찾습니다.

주의할 점:
최솟값(거리)을 묻는 것과, 최소가 되게 하는 점의 좌표를 묻는 것을 구분해야 합니다. 점의 좌표를 찾으려면 대칭점과 원래 점을 잇는 직선과 대칭축의 교점을 구해야 합니다.

최단 거리 조건과 좌표의 관계

마플시너지공통수학2풀이해설0626고퀄리티 풀이영상제공0626 y=x를 이용한 연속 대칭과 최단 거리

[문제 626] 핵심 개념 및 풀이 전략

연속적인 대칭이동을 이용한 최단 거리 문제입니다. 점이 x축과 y축을 모두 거쳐 갑니다.

접근법:
1. 점이 거쳐가는 축(또는 직선)에 대해 시작점과 끝점을 순차적으로 대칭이동시킵니다.
2. 점 A(3,7)를 y축에 대해 대칭이동한 점 A’을 구합니다.
3. 점 B(6,2)를 x축에 대해 대칭이동한 점 B’을 구합니다.
4. AQ+QP+PB의 최솟값은, 최종적으로 이동된 두 점 **A’과 B’을 직선으로 이은 거리**와 같습니다.
5. 두 점 A’과 B’ 사이의 거리를 계산하여 답을 찾습니다.

주의할 점:
각 점이 어떤 축을 거쳐 가는지에 따라 대칭시킬 축이 결정됩니다. Q는 y축 위, P는 x축 위를 움직이므로 각각의 축에 대해 대칭이동을 적용합니다.

y=x를 이용한 연속 대칭과 최단 거리

마플시너지공통수학2풀이해설0627고퀄리티 풀이영상제공0627 좌표 설정을 통한 실생활 최단 거리

[문제 627] 핵심 개념 및 풀이 전략

626번 문제와 동일하게, x축과 y축을 모두 거쳐 가는 경로의 최단 거리를 이용해 직선의 기울기를 찾는 문제입니다.

접근법:
1. 점 A(4,1)를 y축에 대해 대칭이동한 점 A'(-4,1)을 구합니다.
2. 점 B(2,5)를 x축에 대해 대칭이동한 점 B'(2,-5)를 구합니다.
3. 사각형 둘레의 최솟값은 **(선분 A’B’의 길이) + (원래 선분 AB의 길이)** 가 됩니다.
4. 이 문제에서는 최단 경로일 때의 직선 PQ의 기울기를 묻고 있습니다.
5. 최단 경로는 직선 A’B’ 위에 점 P, Q가 있을 때이므로, **직선 A’B’의 기울기**를 구하면 됩니다.

주의할 점:
최단 경로를 만드는 점 P, Q는 대칭이동한 두 점을 잇는 직선과 원래 축들의 교점이라는 사실을 이해해야 합니다.

좌표 설정을 통한 실생활 최단 거리

마플시너지공통수학2풀이해설0612고퀄리티 풀이영상제공0612 직선을 다른 직선에 대해 대칭이동

[문제 612] 핵심 개념 및 풀이 전략

점대칭평행이동이 순차적으로 적용된 직선의 방정식을 찾는 문제입니다.

접근법:
1. (점대칭) 먼저 직선 y=2x+3을 점 (1,2)에 대해 대칭이동한 직선의 방정식을 구합니다. (611번 참고)
2. (평행이동) 1단계에서 구한 직선을 x축으로 3만큼, y축으로 -2만큼 평행이동합니다. (x→x-3, y→y+2 대입)
3. 최종적으로 얻은 직선이 점 (a,-3)을 지나므로, 좌표를 대입하여 a값을 구합니다.

주의할 점:
이동의 순서(점대칭 후 평행이동)를 정확히 지켜야 합니다. 각 이동에 대한 규칙을 정확하게 적용하는 것이 중요합니다.

직선을 다른 직선에 대해 대칭이동

마플시너지공통수학2풀이해설0613고퀄리티 풀이영상제공0613 점의 직선 대칭과 삼각형 넓이

[문제 613] 핵심 개념 및 풀이 전략

원을 점에 대하여 대칭이동시키는 문제입니다.

접근법:
1. 원의 점대칭 이동은 원의 중심을 점대칭 이동하는 것과 같습니다. 반지름은 변하지 않습니다.
2. 원래 원의 중심 (-1,3)을 점 (1,-2)에 대해 대칭이동한 새로운 중심의 좌표를 구합니다. (두 점의 중점이 (1,-2)임을 이용)
3. 이 새로운 중심이 직선 y=x+a 위에 있으므로, 중심의 좌표를 대입하여 a값을 구합니다.

주의할 점:
원 전체의 방정식을 이동시키는 것은 복잡합니다. 항상 중심점의 이동으로 문제를 단순화하여 푸는 것이 효율적입니다.

점의 직선 대칭과 삼각형 넓이

마플시너지공통수학2풀이해설0614고퀄리티 풀이영상제공0614 대칭이동을 이용한 거리의 최솟값

[문제 614] 핵심 개념 및 풀이 전략

점대칭 이동한 직선이 원에 접할 조건을 이용하는 문제입니다.

접근법:
1. 먼저 직선 4x+3y-3=0을 점 (1,0)에 대해 대칭이동한 새로운 직선의 방정식을 구합니다. (611번 참고)
2. 이 새로운 직선이 주어진 원에 접하므로, 원의 중심(-2,1)과 이 직선 사이의 거리가 원의 반지름 r과 같아야 합니다.
3. 점과 직선 사이의 거리 공식을 이용해 등식을 세워 양수 r값을 구합니다.

주의할 점:
점대칭 이동과 원의 접선 조건(d=r)이라는 두 가지 핵심 개념을 순차적으로 정확하게 적용해야 합니다.

대칭이동을 이용한 거리의 최솟값

마플시너지공통수학2풀이해설0615고퀄리티 풀이영상제공0615 최단 거리가 되는 점의 좌표 찾기

[문제 615] 핵심 개념 및 풀이 전략

점대칭 이동한 직선과 원이 만나 생기는 현의 길이를 구하는 문제입니다.

접근법:
1. 직선 3x+4y+7=0을 점 (2,-3)에 대해 대칭이동한 새로운 직선의 방정식을 구합니다.
2. 이제 문제는 ‘새로운 직선과 원 x²+y²=25가 만나 생기는 현의 길이’를 구하는 것으로 바뀝니다.
3. 원의 중심(0,0)과 새로운 직선 사이의 거리 d를 구합니다.
4. 원의 반지름 r은 5입니다.
5. 피타고라스 정리 (현/2)² + d² = r² 을 이용해 현의 길이를 구합니다.

주의할 점:
점대칭 이동, 현의 길이 구하기 등 여러 기본 개념이 순차적으로 사용되는 종합 문제입니다.

최단 거리가 되는 점의 좌표 찾기

마플시너지공통수학2풀이해설0616고퀄리티 풀이영상제공0616 연속 대칭이동을 이용한 최단 거리

[문제 616] 핵심 개념 및 풀이 전략

두 포물선이 한 점에 대하여 대칭일 조건을 이용하는 문제입니다.

접근법:
1. 두 포물선이 한 점에 대해 대칭이려면, 두 포물선의 모양(이차항의 계수의 절댓값)이 같고, 볼록한 방향이 반대여야 합니다.
2. 가장 중요한 특징은, 대칭의 중심점은 바로 두 포물선의 꼭짓점의 중점이라는 것입니다.
3. 각 포물선을 표준형으로 변환하여 꼭짓점의 좌표를 구합니다.
4. 두 꼭짓점의 중점 좌표를 구하면, 그 점이 바로 대칭의 중심 (a,b)가 됩니다.

주의할 점:
‘점대칭’의 기하학적 중심이 ‘두 도형의 꼭짓점의 중점’과 일치한다는 성질을 이용하는 것이 핵심입니다.

연속 대칭이동을 이용한 최단 거리

마플시너지공통수학2풀이해설0601고퀄리티 풀이영상제공0601 점대칭 이동한 직선의 방정식

[문제 601] 핵심 개념 및 풀이 전략

평행이동대칭이동이 순차적으로 적용된 포물선의 방정식을 구하는 문제입니다.

접근법:
1. (평행이동) 먼저 포물선 y=-x²+4x+k를 x축으로 1만큼, y축으로 -2만큼 평행이동한 식을 구합니다. (x 대신 x-1, y 대신 y+2 대입)
2. (x축 대칭) 1단계에서 얻은 포물선을 x축에 대해 대칭이동합니다. (y 대신 -y 대입)
3. 최종적으로 이동된 포물선의 방정식과 문제에서 주어진 y=-x²-6x+5가 서로 일치해야 합니다.
4. 두 방정식의 계수를 비교하여 상수항으로부터 미지수 k의 값을 찾습니다.

주의할 점:
도형의 이동 규칙(평행이동은 부호 반대, 대칭이동은 해당 문자 변환)을 순서대로 정확하게 적용하는 것이 중요합니다.

점대칭 이동한 직선의 방정식