마플시너지공통수학2풀이해설0209고퀄리티 풀이영상제공0209 정점을 지나고 기울기가 주어진 직선

“ [문제 209] 핵심 개념 및 풀이 전략 미지수 k를 포함한 직선이 k값에 관계없이 항상 지나는 점(정점)을 찾는 문제입니다. 접근법:1. 주어진 직선의 방정식을 미지수 k에 대하여 정리합니다. 즉, k가 있는 항과 없는 항으로 묶어 **A * k + B = 0** 형태로 만듭니다.2. 이 식이 k값에 관계없이 항상 성립하려면(k에 대한 항등식), A=0 이고 동시에 B=0 … 더 읽기

마플시너지공통수학2풀이해설0208고퀄리티 풀이영상제공0208 k값에 관계없이 항상 지나는 정점

“ [문제 208] 핵심 개념 및 풀이 전략 세 직선으로 둘러싸인 삼각형의 수심을 찾는 문제입니다. 접근법:1. 먼저 세 직선의 교점을 각각 구하여, 삼각형의 세 꼭짓점 A, B, C의 좌표를 찾습니다.2. 세 꼭짓점의 좌표를 알았으므로, 206번, 207번 문제와 동일한 방법으로 수심의 좌표를 구합니다.3. 계산이 간단한 수선 두 개(예: 꼭짓점 A를 지나고 변 BC에 수직인 직선, 꼭짓점 … 더 읽기

마플시너지공통수학2풀이해설0207고퀄리티 풀이영상제공0207 세 직선으로 만들어진 삼각형의 수심

“ [문제 207] 핵심 개념 및 풀이 전략 206번 문제와 완전히 동일한 유형으로, 삼각형의 수심 좌표를 찾는 문제입니다. 접근법:1. (수선 1) 꼭짓점 A를 지나면서 변 BC에 수직인 직선의 방정식을 구합니다. (BC의 기울기 구하기 -> 수직 기울기 찾기 -> 점 A를 지나는 직선 구하기)2. (수선 2) 꼭짓점 C를 지나면서 변 AB에 수직인 직선의 방정식을 구합니다. (AB의 … 더 읽기

마플시너지공통수학2풀이해설0206고퀄리티 풀이영상제공0206 수심의 좌표 구하기

“ [문제 206] 핵심 개념 및 풀이 전략 삼각형의 각 꼭짓점에서 마주보는 변에 내린 세 수선이 만나는 점(수심)의 좌표를 구하는 문제입니다. 접근법:1. 세 개의 수선 중 계산하기 편한 두 개의 수선의 방정식을 구하면 됩니다.2. (수선 1) 꼭짓점 A를 지나고 변 BC에 수직인 직선의 방정식을 구합니다.3. (수선 2) 꼭짓점 C를 지나고 변 AB에 수직인 직선의 방정식을 … 더 읽기

마플시너지공통수학2풀이해설0205고퀄리티 풀이영상제공0205 삼각형의 수심(세 수선의 교점)

“ [문제 205] 핵심 개념 및 풀이 전략 두 직선의 교점을 지나고, 원점에서 내린 수선의 발을 찾는 종합 문제입니다. 접근법:1. 먼저 주어진 두 직선의 방정식을 연립하여 교점의 좌표를 구합니다.2. 이 교점과 문제에서 주어진 또 다른 점(2,3)을 지나는 직선 l의 방정식을 구합니다.3. 원점에서 직선 l에 내린 수선의 발을 찾는 것은, 204번 문제와 동일한 원리를 적용합니다.4. 원점을 … 더 읽기

마플시너지공통수학2풀이해설0204고퀄리티 풀이영상제공0204 교점을 지나는 직선의 수선의 발

“ [문제 204] 핵심 개념 및 풀이 전략 원점에서 직선까지의 거리가 가장 가까운 점, 즉 수선의 발을 찾는 문제입니다. 접근법:1. 원점에서 직선에 가장 가까운 점은, 원점에서 그 직선에 내린 수선의 발입니다.2. 따라서 원점을 지나는 직선과 주어진 직선이 서로 수직으로 만나야 합니다.3. 주어진 직선의 기울기를 구하고, 그것과 수직인 직선(원점을 지남)의 기울기를 찾습니다.4. 원점을 지나고 수직 기울기를 … 더 읽기

마플시너지공통수학2풀이해설0203고퀄리티 풀이영상제공0203 원점에서 직선까지 가장 가까운 점

“ [문제 203] 핵심 개념 및 풀이 전략 202번 문제와 동일하게 한 점에서 직선에 내린 수선의 발을 찾는 문제입니다. 최종적으로 원점과의 거리를 묻는 단계가 추가되었습니다. 접근법:1. (수직 기울기) 주어진 직선의 기울기를 구하고, 그것과 곱해서 -1이 되는 수직 기울기를 찾습니다.2. (수선 방정식) 점 A(4,7)을 지나고 1단계에서 구한 수직 기울기를 갖는 직선(수선)의 방정식을 구합니다.3. (교점 찾기) 수선의 … 더 읽기

마플시너지공통수학2풀이해설0202고퀄리티 풀이영상제공0202 수선의 발 좌표와 원점 거리

“ [문제 202] 핵심 개념 및 풀이 전략 한 점에서 직선에 내린 수선의 발의 좌표를 구하는 대표적인 문제입니다. 접근법:1. 구하려는 수선의 발 H는 주어진 직선 위의 점입니다. 따라서 H의 좌표를 미지수 a를 이용해 (a, a+1)로 설정할 수 있습니다.2. (수직 조건) 선분 AH와 주어진 직선은 서로 수직입니다. 따라서 두 직선의 기울기의 곱은 -1이 되어야 합니다.3. 이 … 더 읽기

마플시너지공통수학2풀이해설0201고퀄리티 풀이영상제공0201 한 점에서 직선에 내린 수선의 발

“ [문제 201] 핵심 개념 및 풀이 전략 이차함수의 접선과 그 접선에 수직인 직선(법선)의 방정식을 구하고, 이를 이용해 삼각형의 넓이를 구하는 종합 문제입니다. 접근법:1. (접선 구하기) 점 P(1,1)을 지나는 직선이 이차함수에 접하므로, 두 식을 연립한 이차방정식의 판별식 D=0 임을 이용해 접선의 기울기를 찾습니다.2. (법선 구하기) 법선은 접선과 수직이므로, 접선의 기울기를 이용해 법선의 기울기(음수의 역수)를 구하고 … 더 읽기

마플시너지공통수학2풀이해설0200고퀄리티 풀이영상제공0200 접선과 법선을 이용한 삼각형 넓이

“ [문제 200] 핵심 개념 및 풀이 전략 두 직선이 서로 수직으로 만나는 조건을 이용하여, 삼각형의 무게중심을 구하는 문제입니다. 접근법:1. 두 직선 AP와 BP가 점 P에서 수직으로 만나므로, 두 직선의 기울기의 곱은 -1 입니다.2. 직선 AP의 기울기를 구하고, 직선 BP의 기울기를 미지수 n을 포함한 식으로 구합니다.3. 두 기울기의 곱이 -1이라는 방정식을 풀어 n의 값을 확정하고, … 더 읽기