마플시너지공통수학2풀이해설0581고퀄리티 풀이영상제공0581 대칭이동과 평행이동 순차 적용

“ [문제 581] 핵심 개념 및 풀이 전략 대칭이동과 평행이동이 순차적으로 적용될 때, 점의 좌표를 추적하는 문제입니다. 접근법:1. 점 (-5,4)를 원점에 대해 대칭이동한 점의 좌표를 구합니다.2. 1단계에서 구한 점을 x축 방향으로 a, y축 방향으로 b만큼 평행이동한 점의 좌표를 구합니다.3. 이 최종 점의 좌표가 (2,7)과 같다고 놓고, x, y좌표를 각각 비교하여 a,b 값을 구합니다. 주의할 점:문제에서 … 더 읽기

마플시너지공통수학2풀이해설0597고퀄리티 풀이영상제공0597 연속 이동한 원이 직선에 접할 조건

“ [문제 597] 핵심 개념 및 풀이 전략 연속적인 이동을 거친 원이 직선에 접할 조건을 이용하는 문제입니다. 접근법:1. 원래 원의 중심(0,0)을 주어진 규칙(평행이동 → y=x 대칭)에 따라 이동시켜 최종 원의 중심 좌표를 a를 포함한 식으로 구합니다.2. 대칭/평행이동을 해도 반지름은 변하지 않습니다.3. 최종 원의 중심과 직선 4x-3y-3=0 사이의 거리가 반지름 2와 같다는 등식을 세웁니다.4. a에 대한 … 더 읽기

마플시너지공통수학2풀이해설0582고퀄리티 풀이영상제공0582 이동 후의 점에서 원래 점 역추적

“ [문제 582] 핵심 개념 및 풀이 전략 이동 후의 점이 주어졌을 때, 원래 점의 좌표를 역추적하는 문제입니다. 접근법:1. 주어진 이동을 역순으로, 그리고 반대 방향으로 적용하면 원래 점을 찾을 수 있습니다.2. 최종점 (3,1)에서 시작합니다.3. ‘x축 2, y축 -2 평행이동’의 역이동인 ‘x축 -2, y축 +2 평행이동’을 적용합니다.4. 3단계에서 얻은 점을 ‘y=x 대칭’의 역이동인 ‘y=x 대칭’을 적용합니다. … 더 읽기

마플시너지공통수학2풀이해설0598고퀄리티 풀이영상제공0598 연속 이동한 원과 직선의 현의 길이

“ [문제 598] 핵심 개념 및 풀이 전략 연속적인 이동을 거친 원과 직선이 만나 생기는 현의 길이를 구하는 문제입니다. 접근법:1. 원래 원을 주어진 규칙(평행이동 → y=x 대칭)에 따라 이동시켜 최종 원의 방정식을 구합니다.2. 이제 문제는 ‘최종 원과 직선이 만나 생기는 현의 길이’를 구하는 것으로 바뀝니다.3. 최종 원의 중심과 직선 사이의 거리 d를 구합니다.4. 피타고라스 정리 … 더 읽기

마플시너지공통수학2풀이해설0583고퀄리티 풀이영상제공0583 평행/대칭이동 후 직선 위의 점 조건

“ [문제 583] 핵심 개념 및 풀이 전략 평행이동과 대칭이동을 거친 점이 직선 위에 있을 조건을 이용하는 문제입니다. 접근법:1. 점 (-4,2)를 주어진 규칙에 따라 평행이동한 점의 좌표를 미지수 a를 포함한 식으로 나타냅니다.2. 1단계에서 구한 점을 y=x에 대해 대칭이동한 점의 좌표를 구합니다.3. 이 최종 점이 직선 2x-y+1=0 위에 있으므로, 좌표를 직선의 방정식에 대입합니다.4. a에 대한 간단한 … 더 읽기

마플시너지공통수학2풀이해설0599고퀄리티 풀이영상제공0599 연속 이동한 원이 특정 점을 지날 조건

“ [문제 599] 핵심 개념 및 풀이 전략 평행이동과 대칭이동을 거친 원이 특정 점을 지날 때의 미지수를 찾는 문제입니다. 접근법:1. 원래 원을 주어진 규칙(x축 평행이동 → y축 대칭이동)에 따라 이동시켜 최종 원의 방정식을 구합니다.2. 이 최종 원이 점 (0,a)를 지나므로, 원의 방정식에 x=0, y=a를 대입합니다.3. a에 대한 이차방정식이 만들어지며, 이를 풀어 a값을 구합니다. 주의할 점:원의 … 더 읽기

마플시너지공통수학2풀이해설0584고퀄리티 풀이영상제공0584 직선의 평행/대칭이동과 특정 점 통과

“ [문제 584] 핵심 개념 및 풀이 전략 직선의 평행이동과 대칭이동을 순차적으로 적용하는 문제입니다. 접근법:1. 점 (-1,0)을 지나고 기울기가 m인 직선의 방정식을 세웁니다.2. 이 직선을 x축 방향으로 3만큼 평행이동합니다. (x 대신 x-3 대입)3. 2단계에서 얻은 직선을 y축에 대해 대칭이동합니다. (x 대신 -x 대입)4. 최종적으로 얻은 직선이 점 (1,1)을 지나므로, 좌표를 대입하여 기울기 m값을 구합니다. 주의할 … 더 읽기

마플시너지공통수학2풀이해설0600고퀄리티 풀이영상제공0600 연속 이동한 두 원의 공통현의 길이

“ [문제 600] 핵심 개념 및 풀이 전략 대칭이동과 평행이동 후 두 원이 만나서 생기는 공통현의 길이를 구하는 고난도 문제입니다. 접근법:1. 원 O₁을 직선 y=x에 대해 대칭이동하고, 다시 평행이동하여 원 O₂의 방정식을 구합니다.2. 이제 두 원 O₁, O₂가 주어졌으므로, 이 두 원의 **공통현 AB의 길이**를 구합니다.3. 공통현의 길이는 (1)공통현 방정식 구하기 → (2)한 원의 중심에서 … 더 읽기

마플시너지공통수학2풀이해설0585고퀄리티 풀이영상제공0585 연속 이동 후 무게중심 구하기

“ [문제 585] 핵심 개념 및 풀이 전략 연속적인 이동으로 만들어진 세 점으로 구성된 삼각형의 무게중심을 찾는 문제입니다. 접근법:1. 원래 점 P(5,1)의 좌표를 알고 있습니다.2. 점 P를 평행이동한 점 Q의 좌표를 구합니다.3. 점 Q를 y=x에 대해 대칭이동한 점 R의 좌표를 구합니다.4. 이제 세 꼭짓점 P, Q, R의 좌표를 모두 알았으므로, 무게중심 공식을 이용해 G(a,b)를 구합니다. … 더 읽기

마플시너지공통수학2풀이해설0586고퀄리티 풀이영상제공0586 연속 이동 후 세 점의 공선 조건

“ [문제 586] 핵심 개념 및 풀이 전략 대칭이동과 평행이동으로 만들어진 세 점이 한 직선 위에 있을 조건을 이용하는 문제입니다. 접근법:1. 점 A를 y=x에 대해 대칭이동한 점 B의 좌표를 구합니다.2. 점 B를 주어진 규칙대로 평행이동한 점 C의 좌표를 미지수 k를 포함한 식으로 나타냅니다.3. 세 점 A, B, C가 한 직선 위에 있으므로, **직선 AB의 기울기와 … 더 읽기