마플시너지공통수학2풀이해설0533고퀄리티 풀이영상제공0533 평행이동한 직선이 삼각형을 이루지 않을 조건

[문제 533] 핵심 개념 및 풀이 전략

평행이동한 직선이 다른 두 직선과 삼각형을 이루지 않을 조건을 묻는 문제입니다.

접근법:
1. 세 직선이 삼각형을 이루지 않는 경우는, **(1) 두 직선 이상이 평행**하거나 **(2) 세 직선이 한 점에서 만나는** 경우입니다.
2. 먼저, x-2y=0을 평행이동한 직선 x-2y-a=0의 방정식을 구합니다.
3. **(경우 1: 평행)** 이 직선이 나머지 두 직선과 각각 평행할 때의 a값을 찾습니다. (이 문제에서는 기울기가 모두 달라 평행한 경우는 없습니다.)
4. **(경우 2: 한 점)** 미지수가 없는 두 직선의 교점을 먼저 구합니다. 이 교점을 평행이동한 직선이 지나도록 하는 a값을 구합니다.

주의할 점:
세 직선의 위치 관계 문제는 항상 ‘평행’과 ‘한 점 교차’라는 두 가지 핵심적인 경우를 나누어 생각하는 것이 기본입니다.

평행이동한 직선이 삼각형을 이루지 않을 조건

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다