마플시너지공통수학2풀이해설0179고퀄리티 풀이영상제공0179 무게중심을 지나고 변에 수직인 직선

[문제 179] 핵심 개념 및 풀이 전략

두 직선이 수직으로 만나는 교점이, 한 선분의 내분점이 되는 복합적인 문제입니다.

접근법:
1. 직선 AB는 주어진 직선과 수직이므로, 기울기의 곱이 -1이라는 조건에서 a, b의 관계식을 하나 얻습니다.
2. 점 C는 선분 AB의 1:2 내분점입니다. 내분점 공식을 이용해 C의 좌표를 a, b에 대한 식으로 표현합니다.
3. 점 C는 주어진 직선 위의 점이기도 하므로, 2단계에서 구한 C의 좌표를 직선의 방정식에 대입하여 두 번째 관계식을 얻습니다.
4. 두 관계식을 연립하여 a, b의 값을 구합니다.

주의할 점:
수직 조건과 내분점 조건을 각각 식으로 정확하게 표현하고, 이를 연립방정식으로 풀어내는 능력이 필요합니다.

무게중심을 지나고 변에 수직인 직선

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다