마플시너지공통수학2풀이해설0452고퀄리티 풀이영상제공0452 원과 만나는 직선 기울기의 최댓값

[문제 452] 핵심 개념 및 풀이 전략

원 밖의 한 점에서 그은 두 접선의 기울기의 합을 묻는 문제입니다. 근과 계수의 관계를 활용합니다.

접근법:
1. 구하려는 접선의 기울기를 m이라 하고, 점 (3,4)를 지나는 직선의 방정식을 세웁니다.
2. 이 직선이 원에 접하므로, 원의 중심 (1,1)과 직선 사이의 거리가 반지름 1과 같다는 등식을 세웁니다.
3. 이 등식을 정리하면 m에 대한 이차방정식이 만들어집니다. 이 방정식의 두 근이 바로 두 접선의 기울기입니다.
4. 문제에서 ‘기울기의 합’을 요구했으므로, 이차방정식의 근과 계수의 관계를 이용해 답을 구합니다.

주의할 점:
기울기를 직접 구하려고 하면 계산이 복잡해질 수 있습니다. ‘모든 값의 합’을 묻는 것은 근과 계수의 관계를 사용하라는 강력한 힌트입니다.

원과 만나는 직선 기울기의 최댓값