마플시너지공통수학2풀이해설0259고퀄리티 풀이영상제공0259 정점과 원점 거리 최댓값과 그 때의 k값

[문제 259] 핵심 개념 및 풀이 전략

정점을 지나는 직선과 원점 사이의 거리의 최댓값을 구하는 문제입니다.

접근법:
1. **(방법 1: 대수적 풀이)** 원점과 주어진 직선 사이의 거리를 k에 대한 식으로 표현합니다. 이 식이 최대가 되려면 분모가 최소가 되어야 합니다. 분모에 있는 k에 대한 이차식의 최솟값을 이용해 답을 구합니다.
2. **(방법 2: 기하학적 풀이)** 먼저 직선이 k값에 관계없이 항상 지나는 정점 P를 구합니다. 이 문제는 원점 O에서 정점 P를 지나는 수많은 직선까지의 거리를 묻는 것과 같습니다. 거리는 직선이 **선분 OP와 수직일 때 최대**가 되며, 그 최댓값은 바로 **선분 OP의 길이**입니다.

주의할 점:
기하학적 풀이(방법 2)가 훨씬 간단하고 직관적입니다. ‘정점을 지나는 직선과 한 점 사이의 거리의 최댓값은 두 점 사이의 거리’라는 사실을 반드시 기억해두세요.

정점과 원점 거리 최댓값과 그 때의 k값