“
[문제 242] 핵심 개념 및 풀이 전략
특정 점을 지나고 기울기가 미지수인 직선과 원점 사이의 거리가 주어졌을 때, 기울기를 구하는 문제입니다.
접근법:
1. 점 (1,3)을 지나고 기울기가 k인 직선의 방정식을 점-기울기 형태로 세우고, 일반형으로 정리합니다.
2. 원점 (0,0)과 1단계에서 구한 직선 사이의 거리를 k를 포함한 식으로 나타냅니다.
3. 이 거리가 √5와 같다고 등식을 세웁니다.
4. 양변을 제곱하여 k에 대한 이차방정식을 풀고, ‘양수 k’라는 조건에 맞는 답을 찾습니다.
주의할 점:
분모에 루트와 미지수가 함께 들어가는 방정식이므로, 양변을 제곱하여 정리하는 과정에서 계산 실수가 없도록 주의해야 합니다.
”
기하학적 관계와 점과 직선 거리