“
[문제 879] 핵심 개념 및 풀이 전략
세 집합의 교집합과 관련된 원소 개수의 최댓값과 최솟값을 구하는 문제입니다.
접근법:
1. ‘안경만 착용한 학생’은 n(A – (B∪C))를 의미합니다. 이 값을 최대로 만들어야 합니다.
2. **n(A – (B∪C)) = n(A) – n(A∩(B∪C)) = n(A) – [n(A∩B) + n(A∩C) – n(A∩B∩C)]**
3. 이 값이 최대가 되려면, 빼주는 값 [n(A∩B) + n(A∩C) – n(A∩B∩C)]가 **최소**가 되어야 합니다.
4. 주어진 조건들을 이용해 이 식의 최솟값을 찾습니다. 일반적으로 A와 B, A와 C가 최대한 겹치지 않도록, 즉 B∪C가 A와 최소한으로 겹치도록 설정하면 됩니다.
주의할 점:
세 집합의 원소 개수 최대/최소 문제는 벤 다이어그램을 그려 각 영역의 인원이 0 이상이라는 부등식을 세워 연립하여 푸는 것이 정석적인 방법입니다.
”
여러 조건을 만족하는 부분집합 개수 찾기