쎈공통수학1 0167번|임의의 k에 대한 항등식으로 x²+y²=13 조건 잡아 xy=-6 구하기 풀이해설

쎈 공통수학1 0167번 항등식의 성질 — k에 대한 항등식 | 항등식 풀이
쎈 공통수학1 · 2단원 · 항등식과 나머지정리

📘 0167번 — 항등식의 성질 — k에 대한 항등식

난이도: ⭐⭐⭐ 중  |  핵심 개념: 항등식의 성질, k에 대한 항등식

📋 이 포스팅에 포함된 것들

  • 문제 분석 & 핵심 단서 찾기
  • 단계별 친절한 풀이 설명
  • 풀이 영상 (유튜브)
  • 해설 이미지
  • 외워두면 좋은 꿀팁 패턴
  • 흔한 실수 경고
  • 내신·수능 목표 풀이 시간
  • 관련 개념 & 연산 워크시트 링크
🎬 풀이 영상

영상을 먼저 보고, 아래 풀이 설명과 함께 복습하면 효과가 2배예요! 😊

🔍 문제 분석 & 핵심 단서
[문제 요약]
등식 kx²+x+ky²+y−13k+1=0이 임의의 실수 k에 대하여 성립할 때, 상수 x, y에 대하여 xy의 값을 구하는 문제
🔑 이 문제의 핵심 단서는 바로 이것!

식을 k의 차수로 정리! k의 계수=0, 상수항=0 조건이 핵심

✏️ 단계별 풀이 설명
1
k로 묶어 정리
주어진 식을 k에 관해 정리합니다:
k(x²+y²−13) + (x+y+1) = 0
2
k에 대한 항등식 조건 적용
이 등식이 임의의 k에 대해 성립하려면:
k의 계수 = 0: x²+y² = 13
상수항 = 0: x+y = −1
3
xy 구하기
(x+y)² = x²+2xy+y²
(−1)² = 13+2xy
1 = 13+2xy
2xy = −12 → xy = −6
4
정답 확인
xy = −6 → 정답 ①
📌 x²+y²과 x+y만으로 xy를 구하는 이 흐름, 꼭 기억하세요!
정답: −6 (①)
💡 외워두면 좋은 꿀팁 패턴
🌟 이 유형의 황금 패턴

임의의 k에 대해 성립 → k의 계수=0 AND 상수항=0 → 두 방정식 연립

⚠️ 이것만 조심하세요!

k에 대한 항등식으로 변환하는 발상을 못하거나, x²+y²=13에서 xy를 구하는 과정에서 (x+y)²=x²+2xy+y² 공식 실수

⏱️ 목표 풀이 시간

시험장에서 이 문제를 만났을 때 아래 시간 안에 풀 수 있도록 연습하세요!

🏫 내신 시험
3~4분
계산 검토 시간 포함
📝 수능 시험
2~3분
패턴 암기로 시간 단축!
시간 줄이는 법: 이 단원의 핵심은 “어떤 값을 대입하면 미지수가 사라지는가”를 빠르게 파악하는 훈련입니다. 연산 워크시트로 비슷한 유형을 반복 연습해서 패턴을 손에 익히세요!
🖼️ 해설 이미지
쎈 공통수학1 0167번 해설
이미지를 불러오는 중입니다…
🎯 마플시너지 추천 문제

같은 개념을 다른 각도로 연습하고 싶다면 아래 마플시너지 포스트를 추천해요!

🗺️ 추천 학습 순서
✍️ 연산 워크시트
📖 개념 포스트
🎯 마플시너지

연산으로 기초 계산에 익숙해진 후 → 개념 포스트로 원리를 이해하고 → 마플시너지로 심화 문제에 도전하세요! 🚀

댓글 남기기