“
[문제 457] 핵심 개념 및 풀이 전략
원 밖의 한 점에서 그은 두 접선이 y축과 만나는 점의 좌표를 묻는 문제입니다.
접근법:
1. 점 (2,-4)에서 원 x²+y²=2에 그은 두 접선의 방정식을 구해야 합니다.
2. 접선의 기울기를 m이라 두고, 점 (2,-4)를 지나는 직선의 방정식을 세웁니다.
3. 원의 중심 (0,0)과 이 직선 사이의 거리가 반지름(√2)과 같다는 조건을 이용해 m에 대한 이차방정식을 풉니다.
4. 두 개의 m값이 나오면, 각각의 접선의 방정식을 완성합니다.
5. 각 접선의 방정식에서 y절편(x=0일 때 y값)을 구하면 그것이 a와 b가 됩니다.
주의할 점:
접선의 방정식을 구하는 과정에서 계산이 복잡할 수 있습니다. 점과 직선 사이의 거리 공식을 정확히 적용해야 합니다.
”
원 밖에서 그은 접선의 x절편