마플시너지공통수학2풀이해설0455고퀄리티 풀이영상제공0455 두 접선이 이루는 각의 이등분선

[문제 455] 핵심 개념 및 풀이 전략

한 원에 접하고 다른 원의 넓이를 이등분하는 직선 문제입니다. 454번과 조건의 순서만 바뀌었습니다.

접근법:
1. 직선이 원 O’의 넓이를 이등분하므로, 원 O’의 중심 (0,4)를 지납니다.
2. 이제 문제는 ‘점 (0,4)를 지나고 원 O에 접하는 직선’을 찾는 것으로 바뀝니다.
3. 접선의 기울기를 m이라 두고 점 (0,4)를 지나는 직선의 방정식을 세웁니다.
4. 이 직선과 원 O의 중심 (0,0) 사이의 거리가 반지름 2와 같다는 조건을 이용해 m값을 구합니다.
5. 문제의 조건에 맞는 양수 기울기를 선택하여 직선을 완성하고, 주어진 점을 대입해 a값을 구합니다.

주의할 점:
두 가지 조건을 어떤 순서로 해석하든, 결국 ‘특정 점을 지나고 원에 접하는 직선’을 찾는 문제로 귀결됩니다.

두 접선이 이루는 각의 이등분선

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다