마플시너지공통수학2풀이해설0356고퀄리티 풀이영상제공0356 아폴로니우스의 원과 각의 크기 최댓값

[문제 356] 핵심 개념 및 풀이 전략

아폴로니우스의 원 위에서, 특정 각의 크기가 최대가 되는 순간의 선분의 길이를 묻는 고난도 문제입니다.

접근법:
1. 먼저 점 P의 자취인 아폴로니우스의 원의 방정식을 구합니다.
2. 각 POA의 크기가 최대가 되는 순간은, **직선 OP가 원에 접할 때**입니다.
3. 이 상황은 원점 O를 원 밖의 한 점으로 보고, 원에 그은 접선의 접점이 P가 되는 상황과 같습니다.
4. 원의 중심 C, 원점 O, 접점 P는 직각삼각형 OCP를 이룹니다.
5. 피타고라스 정리를 이용해 접선의 길이, 즉 선분 OP의 길이를 구합니다.

주의할 점:
각의 크기가 최대가 되는 지점이 접점이라는 기하학적 통찰이 필요합니다. 그림을 그려서 위치 관계를 파악하면 이해에 도움이 됩니다.

아폴로니우스의 원과 각의 크기 최댓값

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다